
Postprint, May 2024

Stochastic Process Discovery:
Can it be Done Optimally?

Sander J.J. Leemans1,2, Tian Li1,4, Marco Montali3⋆, and Artem Polyvyanyy4

1 RWTH Aachen University, Germany
{s.leemans, t.li}@bpm.rwth-aachen.de

2 Fraunhofer, Germany
3 Free University of Bozen-Bolzano, Italy
4 The University of Melbourne, Australia

Abstract. Process discovery is the problem of automatically construct-
ing a process model from an event log of an information system that
supports the execution of a business process in an organisation. In this
paper, we study how to construct models that, in addition to the control
flow of the process, capture the importance, in terms of probabilities, of
various execution scenarios of the process. Such probabilistic aspects of
the process are instrumental in understanding the process and to pre-
dict aspects of its future. We formally define the problem of stochastic
process discovery, which aims to describe the processes captured in the
event log. We study several implications of this definition, and introduce
two discovery techniques that return optimal solutions in the presence
and absence of a model of the control flow of the process. The proposed
discovery techniques have been implemented and are publicly available.
Finally, we evaluate the feasibility and applicability of the new tech-
niques and show that their models outperform models constructed using
existing stochastic discovery techniques.
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1 Introduction

The increasing complexity of modern socio-technical and cyber-physical sys-
tems is calling for a change of paradigm in their engineering, moving from pure
model-driven engineering to approaches where models and execution data are
synergically connected [16]. In enterprise information systems engineering, this
practice has a long tradition when focusing on how organisations operate, that
is, on their work processes. Specifically, process mining techniques [1] provide
insights on processes by analysing the event data produced within an organi-
sation while executing such processes. Even data yield, implicitly or explicitly,
event logs recording the historical executions of the process under scrutiny, where
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each execution typically corresponds, in the log, to an (execution) trace: a time-
ordered sequence of triggered events, each referring to an activity within the
process. A key process mining task is that of process discovery, whose goal is to
learn a process model that suitably reconstructs the behaviours contained in the
event log under scrutiny, and that can be used as a driver for fact-based process
analysis and improvement. However, traditional process discovery techniques do
not transfer into the discovered models any information regarding the relative
frequency, and in turn the likelihood, of the observed traces. This hampers the
possibility of using such models, as letting infrequent flows in the process influ-
ence optimisation and analysis indistinctly from frequent ones is improvident.

To tackle this limitation, stochastic process discovery techniques learn pro-
cess models that pair traces with indications on how likely one can expect to
see them in the future executions of the process. This is challenging due to a
granularity mismatch in the stochastic information contained in a log or model.
At the log level, the likelihood of a trace is directly obtained by dividing its
frequency with the total number of log traces. At the model level, stochastic
information is usually attached locally to decision points, and the likelihood of
a trace is only indirectly obtained by chaining such (independent) decisions. In
spite of this challenge, several stochastic process discovery techniques have been
proposed [19,7,6], empirically demonstrating their applicability and quality us-
ing real-life logs. On the downside, none of these works provides foundational
insights on the problem space and on the formal properties of the proposed
techniques, in terms of optimality and guarantees.

The goal of this work is to fill this gap, providing a foundational investiga-
tion of stochastic process discovery, in the case where the target process model is
expressed using stochastic variants of Petri nets [17,15,11]. We provide a formal
definition of the problem, casting it as a two-dimensional optimisation problem.
The first dimension concerns the behaviour of the process, that is, the selection
of a process model in a class of Petri nets defined based on some representational
bias defining which constructs can be expressed (e.g., whether labels can be re-
peated). The second dimension concerns the stochastic information attached to
the process, employing measures that define how well the distribution of traces
induced by the model matches the distribution of the log. We study the implica-
tions of this definition in terms of optimality, considering two types of stochastic
process discovery techniques. The techniques from the first type operate under
the assumption that the control flow of the target process model is given, and
the goal is to enhance it with the “best” stochastic information. The techniques
of the second type relax this assumption, and entangle control-flow and stochas-
tic information discovery in a single step. Finally, we evaluate the introduced
techniques in the context of existing stochastic process discovery algorithms.

The paper is organised as follows. In Section 2, we discuss related work, while
in Section 3, we introduce existing concepts. Section 4 formally introduces the
problem of stochastic process discovery and discusses some inherent aspects of
this definition. Sections 5 and 6 introduce two discovery techniques. Section 7
evaluates the introduced techniques before Section 8 concludes the paper.



2 Related Work

The representation, discovery and measurements of stochastic process models
have been investigated before in several settings, leading to a variety of tech-
niques that deal with different prerequisites, targets, advantages and limitations.

Several formalisms are used in process mining for representing stochastic pro-
cess models. Generalised Stochastic Petri nets are a well-established formalism
for stochastic modelling [3]. Molloy [17] introduced the first model to handle
the stochastic aspect, which was extended later by Marsan et al. [15] by distin-
guishing timed and immediate transitions, showing how the resulting stochastic
behaviour can be captured through a discrete-time Markov chain.

Several measures have been proposed to quantify the quality of a stochastic
process model with respect to an event log. Entropic relevance measures the
average number of bits required to compress a trace in the input event log
based on the structure and information about the relative likelihoods of traces
provided by the stochastic process model [18]. Consequently, a model with a
lower relevance value to a given log is accepted as such that describes the traces
and their likelihoods better. Earth Movers’ Stochastic Conformance (EMSC)
derives the stochastic languages from the input event log and model and then
measures the earth movers’ distance between them [14].

The ability to discover the stochastic perspective of processes has enabled
new types of analyses in process mining, such as analysis tasks on the traces of
labelled stochastic processes and their probabilities [11]—instrumental to pro-
vide exact methods for computing stochastic conformance measures, detection
of stochastic-based changes in processes [5], and techniques for weighting align-
ments depending on the likelihood of model traces [4].

Existing stochastic process discovery techniques can be classified into two
categories: one-stage techniques directly discovering a stochastic model from an
event log and two-stage approaches that first discover a control-flow model, and
then annotate it with stochastic information. To the best of our knowledge,
Toothpaste Miner [7] is the only known stochastic discovery technique that au-
tomatically outputs a stochastic process model without relying on a given con-
trol flow model. However, this approach does not provide conformance-measure
guarantees. Recently, several two-stage approaches have been proposed. The
GDT SPN Miner [19] is an alignment-based technique that estimates arbitrary
delay distributions of stochastic Petri nets. The weight estimation framework
includes deterministic and non-deterministic estimators that derive an SPN [6].
In [12], the authors proposed the discovery of stochastic dependencies, which
address the likelihood of decisions influenced by earlier decisions. Two-stage dis-
covery is reminiscent of the widely investigated problem of parameter synthesis in
probabilistic models (in particular, Markov chains) [8]. The crucial difference is
that in parameter synthesis there is a single probabilistic reachability/temporal
property used to drive the search for parameter assignments, while in two-stage
discovery this is done by considering multiple properties, expressing that the
probability of each log trace according to the model should resemble the fre-
quency with which it appears in the log. To the best of our knowledge, the limi-



tations of stochastic process discovery have not been studied, and no stochastic
process discovery technique that guarantees some kind of optimal result with
respect to a conformance measure have been proposed.

3 Preliminaries

Multisets, logs, vectors. A multiset X : S → N is a mapping of elements in S
to the natural numbers. The multiset union is (X1⊎X2)(a) ≡ X1(a)+X2(a), the
multiset subset is X2 F X1 ≡ ∀a∈SX1(a) ≥ X2(a), and for any multiset X over
S, X F S∞. For multisets X, X ′, if X F X ′ then (X \-X ′)(a) = X(a) −X ′(a)
is the multiset difference. Thus, the multiset X = [x2, y3, z5] contains 10 items,
and |X| = 3 while ||X|| = 10. X̄ = {a | X(a) > 0} is the corresponding set.

A trace is a sequence of activities that denotes the process steps executed for
a particular case of a process. An event log is a multiset of traces. Figure 1c is
an event log with 100 traces. For an (event) log L, L̃ denotes its prefix closure:
L̃ ≡ {⟨a1 . . . am⟩ | ⟨a1 . . . am, . . .⟩ ∈ L̄}. The set of all logs is L.

LetA = ⟨a1, . . . , an⟩,B = ⟨b1, . . . , bn⟩ be vectors. Then,A ⪰ B ≡ ∀1≤i≤nai ≥
bi, and A⊙B ≡ ⟨a1b1, . . . , anbn⟩; we might omit ⊙ if the context is clear.

Stochastic models. A stochastic language is a weighted collection of traces,
such that the sum of weights of all traces in the language is 1. A stochastic model
M expresses a stochastic language. The set of all stochastic models is M.

Definition 1 (Stochastic Petri net). Let P be a set of places, let T be a set
of transitions such that P ∩T = ∅, let F F (P ×T ⊎T ×P )∞ be a flow relation,
let w : T → R+ be a weight function and let M0 F P∞ be an initial marking.
Then, (P, T, F,w,M0) is a stochastic Petri net (SPN).

Definition 2 (Stochastic labelled Petri net). Let Σ be an alphabet of activ-
ities, let (P, T, F,w,M0) be an SPN and let λ : T → Σ∪τ be a labelling function.
Then, (P, T, F,w,M0) is a stochastic labelled Petri net (SLPN).

An SPN or SLPN starts execution in its initial marking M0. Let t• = [p |
(t, p) ∈ F ] and •t = [p | (p, t) ∈ F ]. In a marking M , the transitions Te = {t |
•t F M} are enabled. An enabled transition t ∈ Te can fire, with firing probability

P(t | M) = w(t)
Σt′∈Te

w(t′) , which results in a new marking M ′ = M ⊎ t• \- •t. A path

is a sequence of transitions ⟨t1 . . . tn⟩ such that there is a sequence of markings
⟨M0 . . .Mn⟩ such that ∀1≤i≤n

•ti F Mi−1 ∧ Mi = Mi−1 ⊎ t•i \- •ti and Mn is a
deadlock, that is, ¬∃t∈T

•t F Mn. That is, a path brings the model from its
initial marking M0 to a deadlock marking. The probability of a path ⟨t0 . . . tn⟩
is
∏

1≤i≤n P(ti | Mi) where Mi = Mi−1 ⊎ t• \- •t.
A trace is a sequence of activities. For an SPN, path and trace are equivalent

notions, while for an SLPN, the projection of a path by λ on the non-τ transitions
is a trace. In an SLPN, there may be several (even countable-infinitely many [10])
paths that project to the same trace. For an SPN or SLPN M and a trace σ,
we write M(σ) for the probability of σ in M . For σ, we introduce an automaton
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Fig. 1: Example log and model.

that accepts σ interleaved with arbitrary silent transitions (Figure 1d shows an
example):

Definition 3 (Silenced trace DFA). Let τ be the silent label. The silenced
trace deterministic finite automaton (SDFA) of trace σ = ⟨a1, . . . , an⟩ is a tuple
(Σ, S, s0, Sf , δ) where Σ = {a0, . . . , an}, S = {s0, . . . , sn+1}, Sf = {sn+1}, and
δ = {si × ai → si+1 for 1 ≤ i < n+ 1} ∪ {si × τ → si for 1 ≤ i < n+ 1}.

Definition 4 (Stochastic Reachability Graph). The stochastic reachability
graph of an SLPN M is a labelled transition system R = (Σ, S, s0, Sf , ϱ, p)
where Σ is a finite set of labels, S is a set of states (reachable markings in
M), s0 ∈ S is the initial state, Sf ⊆ S is the set of accepting states, ϱ : S ×
Σ → S is a transition function, and p : ϱ → [0, 1] is a probability function that
maps each transition in ϱ to a probability value, such that for every transition
t = ⟨s, l, s′⟩ ∈ ϱ, p(t) = P(t|s), and for every non-deadlock marking s ∈ S,∑

t=⟨s,l,s2⟩∈ϱ p(t) = 1.

If we disregard labels in the stochastic reachability graph and only consider
firing probabilities, the graph is a discrete-time absorbing Markov chain, by
mapping the final states to the absorbing states, non-final states to the transient
states, and strip off transition labels, while keeping the probabilities.

Definition 5 (Absorbing Markov Chain for Stochastic Reachability
Graph). Let R be a stochastic reachability graph, its absorbing Markov chain
is a tuple C = (S, ϱ, p) where S = St ∪ Sa, such that St is the set of transient
states, and Sa is a set of absorbing states, ϱ ⊆ S×S is a transition relation, such
that ⟨S, ϱ⟩ is a connected graph, and p : S × S → [0, 1] is a probability function,
such that for all states s ∈ Sa :

∑
t=⟨s,s′⟩ p(t) = 1.

Stochastic conformance measures. A stochastic conformance measure δ
compares an event log and a stochastic model, that is, δ : L × M → R. In



this work, we use two such measures: unit earth movers’ stochastic conformance
(uEMSC [14]) and inverted entropic relevance (ER-1 [2]).

uEMSC captures the agreement mass between the distributions of L and M .

Definition 6 (Unit Earth Movers’ Stochastic Conformance [14]). Let L
be an event log and let M be an SLPN. Then, the unit Earth Movers’ Stochastic
Conformance is uEMSC(L,M) = 1−

∑
σ∈L̄ max(L(σ)−M(σ), 0).

An entropic relevance of a stochastic process model M to an event log L
measures the average number of bits required to describe a trace in L given
the information available in M .5 The lower the relevance, the better the model
describes the stochastic language of the log. To allow consistent discussions, in
this work, we invert entropic relevance to obtain a conformance measure.

Definition 7 (Inverted Entropic Relevance [2]). Let L be a non-empty
event log and let M be an SLPN. Let Λ be the set of all activities appearing
in the traces of L. Then, the inverted entropic relevance (ER-1) of M to L is
defined as follows:

ER-1(L,M) =
1

H0

(∑
σ∈L̄,M(σ)>0 L(σ)

)
+
∑

σ∈L̄ L(σ)J(σ,M)

J(σ,M) =

{
− log2 M(σ) M(σ) > 0

(1 + |σ|) log2(1 + |Λ|)) otherwise

H0(x) = − x log2 x− (1− x) log2 (1− x) with H0(0) = H0(1) = 0

4 The Stochastic Discovery Problem

In this section, we formally define the stochastic discovery problem, show several
direct implications of our definition, and prove a generic result for uEMSC.

Definition 8 (Stochastic process discovery problem). Let L be an event
log and let δ : L × M → R≥0 be a stochastic conformance measure. Then, the
stochastic discovery problem is to find a model M of a class of models M′ such
that M maximises stochastic conformance with L:

δ(L,M) = max
M ′∈M′

δ(L,M ′)

For the representational bias M′ of all SLPNs, this definition is prone to
over-fitting, and trivial solutions exist. For instance, for δ = uEMSC and rep-
resentational bias M′ of all SLPNs, a technique that satisfies this definition
would be to return an SLPN representing every trace of L with the likelihood
of that trace (a stochastic trace model), which would be a useless exercise as
nothing new would have been learned and the model would be too complex for

5 We use entropic relevance that relies on the uniform background coding model [2].
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Fig. 2: Example of frequencies vs. weights.

human analysis. Furthermore, in evaluation settings, to avoid over-fitting, one
should either separate evaluation and training data, or consider an appropriate
representational bias, and obviously the definition given here does not guarantee
optimality in such cases. As such, this definition is rather limited, but allows us
to discuss stochastic process discovery in more detail, and obtain techniques that
nevertheless perform competitively in evaluations, even though the optimality
does not extend to these evaluation settings.

4.1 Implications

Weights vs. frequencies. Regardless of the representational bias, how often a
transition is executed (its frequency) is not necessarily proportional to its weight
in a stochastic model.

Figure 2 shows an example of two SPNs with concurrency, only differing in
their stochastic perspective. In the SPNs and the log, all activities occur exactly
once per trace. Thus, an estimator technique based on frequencies, such as [6],
will assign equal weights to all transitions, for instance SPN 1. However, next to
which activities are executed, the weights in an SPN also influence the order of
activities. As such, intuitively SPN 2 is a much more likely explanation for the
log than SPN 1. This is reflected in the stochastic conformance measures, shown
in Figure 2d, all of which assign higher scores to SPN 2.

Another example is shown in Fig. 4. SPN 5 is frequency-based, while in
SPN 6, b has twice the weight of a. The latter model has higher uEMSC and
EMSC scores, as it prioritises the trace ⟨b, d⟩ at the expense of the a traces, which,
in this case, proves beneficial for these measures. ER-1 of SPN 6 is lower than
that of SPN 5, though. Despite traces ⟨a, d⟩ and ⟨b, d⟩ are modelled by SPN 6
perfectly, the probabilities of traces ⟨a, c⟩ and ⟨b, c⟩ as per SPN 6 deviate further
from those in the log, as compared to their probabilities in SPN 5, causing
non-linear effects on ER-1. This example shows that frequency-based weight
estimators are also challenged by dependent choices.

Loops. In the representational bias of SPNs, a model with loops is unlikely to
be the result of stochastic process discovery according to Definition 8.

For instance, consider Figure 3. In SPN 3, 1/16 probability mass is included in
traces with 4 or more as, which does not appear in the event log. In SPN 4, the
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Fig. 3: Example of the influence of bounding loops.

loop is bounded by an extra place with 3 tokens, such that this probability mass
is not “lost” on traces that are not in the event log, but instead is put on the
longest trace. This is reflected in the conformance measures shown in Figure 3d.

In Lemma 1, we will prove that in general, uEMSC can only go up when
adding such bounding places that do not restrict the behaviour in the log.

This example also shows the limitations of Definition 8: even though uEMSC
may increase a little by adding such places, the model also gets more complex.

Two-stage approach. Regardless of the representational bias, existing stochas-
tic process discovery approaches can be categorised by that the technique either
(i) discovers control flow itself (one-stage, e.g. [7]) or (ii) leverages a control flow
model as input (two-stage, e.g. [6]).

Figure 4 shows an example of the limitations of a two-stage approach, that
is, first discovering a process model and then estimating the weights on top of it.
In this example, the likelihoods of c and d depend on the choice between a and
b. Comparing SPN 5 to SPN 7, we observe that SPN 5 (without its stochastic
perspective) is a fully fitting model, but is less precise than SPN 7, whereas
SPN 7 has a slightly lower fitness but a higher precision.

The stochastic measures, as shown in Figure 4e, clearly prefer SPN 7. Thus,
a control-flow trade-off needs to be made, with implications on the stochastic
perspective. Hence, in this example, the stochastic perspective needs to be con-
sidered to decide on the control flow structure of the model.

The example shows that a lower fitness does not guarantee lower stochas-
tic quality, and a higher fitness does not guarantee a higher stochastic quality.
Therefore, it may be challenging to choose a model if stochastic quality is to be
optimised. Thus, a two-stage approach may not always yield the best results.

4.2 uEMSC and Precision

Next, we establish the relation between control-flow precision and uEMSC. That
is, we show that if non-log traces are removed from a model, uEMSC can only
improve (which is conceptually linked to precision in [20, A2]).

Lemma 1 (Precision - uEMSC monotonicity). Let L be an event log, and
let M and M ′ be SPNs, such that M = (P, T, F,w,M0) and M ′ = (P ′, T, F ′, w,M0),
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Fig. 4: Example of the interplay between places and weights.

such that L̃ ∩ M̃ = L̃ ∩ M̃ ′, and such that M̃ ′ ⊂ M̃ . Then, uEMSC(L,M) ≤
uEMSC(L,M ′).

Proof. Let σ ∈ M̃ , σ /∈ M̃ ′, σ /∈ L̃. Let ρ = M(σ) be the probability of σ in M .
As σ does not contribute to uEMSC(L,M), it holds that uEMSC(L,M) ≤ 1−ρ.
As M ′ is a SPN, the probability mass ρ is accounted for in traces other than σ.
As some of these traces may be in L, by definition of uEMSC, uEMSC(L,M) ≤
uEMSC(L,M ′). ⊓⊔

Informally, ρ gets distributed from traces allowed by M that are not in the event
log (that is, imprecise traces), to other traces in M ′. Some traces in M ′ therefore
get extra probability, and for some traces σ, this may increase the difference
between L(σ) and M(σ), which leaves uEMSC unchanged as ρ already fully
counted against uEMSC(L,M). However, for some traces σ′ it may be that this
difference gets smaller, thereby increasing uEMSC(L,M ′).

5 Stochastic Discovery as a Decision Problem

In this section, we translate stochastic process discovery with the representa-
tional bias of SPNs to a decision problem for uEMSC. That is, in this section,
we consider the setting in which we do not have a control-flow model yet, and
we aim to discover a fully stochastic model in one go, where we limit ourselves
to the unlabelled transitions of SPNs. We start with the given set of transitions
T . Then, we need to decide on four sets of variables: (i) the set of places P , (ii)
the initial marking M0 ∈ P∞, (iii) for every place p ∈ P and transition t ∈ T ,
the arc multiplicities t•p ∈ N and •tp ∈ N, and (iv) for every transition t ∈ T ,
a weight: Wt ∈ (0, 1]. For ease of notation, we write these variables as vectors,
that is, M0, t

•, •t and W . If M0(p) = t•p = •tp = 0, a place p has no influence
on the result, and thus the set of places P is a dependent variable and will be
ignored further on.



We do not require that every trace of the log fits the model, so we need to
keep track of which of the traces are supported by the model. Inspired by the
ILP miner [21], if the net supports a trace σ, it should support all its prefixes,
and the net should be in a deadlock after σ.

We introduce helper variables E indicating whether a pre-fix is supported by
the model. As a base case, the empty pre-fix is supported by the model in any
case (1), and a non-empty pre-fix σ · ⟨t⟩ is supported if and only if the shorter
pre-fix σ is supported and after executing all transitions in σ, t is enabled (2).

E⟨⟩ = true (1)

∀σ·⟨t⟩∈L̃Eσ·⟨t⟩ = Eσ ∧M0 +

(∑
t′′∈σ′

(t′′• − •t′′)

)
⪰ •t (2)

Furthermore, we introduce helper variables D indicating whether a trace is
supported by the model. That is, for every trace σ ∈ L̄ in the log, Dσ is true if
and only if the net supports σ and after σ the net is in a deadlock:

∀σ∈L̄Dσ = Eσ ∧ ∀t∈T

(
M0 +

∑
t′′∈σ′

t′′• − •t′′

)
̸⪰ •t (3)

An optimal solution for Definition 8 can then be obtained by maximising
uEMSC directly in the objective function. This function multiplies the probabil-
ity of a trace by whether the trace is enabled (assuming false = 0 and true = 1):

1−
∑
σ∈L̄

max

L(σ)−Dσ

∏
σ′·⟨t⟩·σ′′=σ

Wt∑
(M0+

∑
t′′∈σ′ (t

′′•−•t′′))⪰•t′ Wt′
, 0

 (4)

Then, the full problem can be written as maximising (4) such that (1)∧ (2)∧
(3). By construction, the optimal solution to this problem corresponds to a SPN
that maximises uEMSC, satisfying the problem of Definition 8.

Irrelevant places. Next to an event log L, the optimisation problem requires
a parameter of the maximum number of places the optimiser can utilise. Even
if we do not consider arc multiplicities, there are 22|T | potential places in an
SPN with transitions T . For 10 transitions, this would already yield 1 048 576
candidate places. The optimisation problem uses 2|T |+1 variables for each place,
thus for practical computabilty, the number of places needs to be limited.

Observe that if an optimal SPN has |P | places, then allowing for more places
in will not decrease uEMSC: the optimisation problem can, for instance, simply
duplicate places, which obviously does not change the behaviour of the resulting
net. We refer to such places as irrelevant places:

Definition 9 (Irrelevant place). Let L be a log and let M,M ′ be SPNs with
places P and P ′, such that P = P ′ \ {p} and uEMSC(L,M) = uEMSC(L,M ′).
Then, p is an irrelevant place.



To check whether a place in an SPN is irrelevant, we can remove this place
and compare the uEMSC of the SPN before and after the place removal. We
conjecture that if the optimiser returns a net with irrelevant places, then adding
more places will not improve uEMSC, and consequently Definition 8 is satisfied.

Conjecture 1. If the optimiser returns a irrelevant place, then adding even more
places |P | will not increase the uEMSC score.

We use these two results to guide the optimisation: we simply attempt with
a number of places |P | and check for irrelevant places. If no such place is found,
we repeat the optimisation with a larger number of places, until an optimisation
yields an irrelevant place. Then, we have a lower bound and an upper bound
for the number of places |P |, and we can apply a binary search to find the
model with the smallest number of places that satisfies Definition 8. While to
the best of our knowledge this is the first stochastic discovery technique that
guarantees an as-high-as-possible uEMSC score, it requires a mixed-integer non-
convex solver and would probably need further consideration to be practically
applicable. Therefore, we leave its implementation as future work. Instead, we
proceed with a more practically applicable technique that works on the more
generic representational bias of labelled Petri nets, and that uses a separately
discovered control flow model as input.

6 Stochastic Discovery Given the Control-Flow Structure

In this section, we address a different setting: we assume that a control flow
model is given, and we need to assign the stochastic perspective to it that gives
us the highest uEMSC. As a trade-off for being given the control flow model,
the method of this section can handle labelled transitions. Given a log and a
labelled Petri net N , we discover an SLPN that best represents the stochastic
information in L with the control flow of N . Our strategy is to turn the net
into an SLPN M that assigns a weight parameter to every transition. Then,
stochastic discovery is posed as an optimisation problem, where values for the
weights must be found so that a stochastic conformance measure is maximised.

To set up the optimisation problem, for every trace σ in the log, we extract
a symbolic formula characterising the parametric probability of σ according to
M , by adapting the trace probability calculation given in [10,11]. First, σ is
turned into an SDFA to account for silent transitions. Then, the cross product
of the SDFA and a parametric stochastic reachability graph of M is constructed.
The cross product is a parametric absorbing Markov chain, from which a sys-
tem of equations accounting for step-wise probabilities can be extracted, in turn
allowing to obtain the probability of σ according to M as the absorption prob-
ability of the Markov chain - which can be solved symbolically, considering the
parameters. This is then repeated for every trace, combining all the so-obtained
symbolic formulae together using a stochastic conformance measure. We detail
these steps in the remainder of the section.
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Fig. 5: Example for the trace ⟨talk, record, identify, troubleshoot⟩.

Note that we cannot equate the symbolic formulae to the observed trace
probabilities in the log, as due to the representational bias of the given control
flow, that solution may not exist.

Constructing the cross-product system. We convert the given net N into a
parametric SLPN M by associating each transition in N to a weight parameter.
To compare M with the input log L, we characterise the probability of each
trace σ in L according to M . This cannot be done directly: if the input N
contains silent transitions, the same trace might correspond to infinitely many
different paths in M [10,11]. We therefore follow the steps of [10,11], with as
main difference that while in [10,11] the weights of the SLPN are given, and
the only unknown variable is the trace probability, here also the weights are
parameters. So, instead of getting a solution for the trace probability, we will
obtain a symbolic formula describing how the trace probability relates to the
weight parameters of M .

The first step towards this is to turn each trace σ into an SDFA (cf. Defi-
nition 3), then computing the cross-product system of such an SDFA and the
stochastic reachability graph (cf. Definition 4) of M , recalled here:

Definition 10 (Cross-Product System). Let R = (Σ1, S1, s10, S
1
f , ϱ, p) be

the stochastic reachability graph of an SLPN M , and D(σ) = (Σ2, S2, s20, S
2
f ,

δ) be an SDFA describing all and only those runs whose corresponding trace is
σ. The cross-product system of M and σ is an absorbing Markov chain Eσ

M =
M ⊗ σ = (s⊗0 , ϱ

⊗, p⊗, S⊗, S⊗
f ) where:

– s⊗0 = (s10, s
2
0),

– for every s = (s1, s2) ∈ S⊗, we have s1 ∈ S1 ∧ s2 ∈ S2,
– for every s = (s1, s2) and s′ = (s1

′
, s2

′
) ∈ S⊗ with ∃l∈Σ1∩Σ2 ⟨s1, l, s1′⟩ ∈

ϱ ∧ δ(s2, l) = s2
′
, we have ⟨s, l, s′⟩ ∈ ϱ⊗, p⊗(s, l, s′) = p(s1, l, s1

′
),

– for every (s1f , s
2
f ) ∈ S⊗

f , we have s1f ∈ S1
f ∧ s2f ∈ S2

f ,

For example, Figure 5a shows the cross-product system of the trace ⟨talk,
record, identify, troubleshoot⟩ and the stochastic reachability graph in Figure 1b.



It has multiple paths whose label sequence corresponds to the trace, and we omit
the parts of the system that do not lead to the accepting state m13.

Describing trace probabilities. Given the cross-product system Eσ
M = (s⊗0 ,

ϱ⊗, p⊗, S⊗, S⊗
f ), we denote S⊗

n as the set of non-target accepting states. To
describe how the probability of trace σ according to M depends on the param-
eters of M , we recast [10,11], which uses standard techniques from literature on
absorbing Markov chain to turn the cross-product into a corresponding system
Eσ
M of step-wise equations, where every state s ∈ S⊗ corresponds to a probability

variable xs, and equations are defined based on M ⊗ σ as follows:

xsi = 1 for each si ∈ S⊗
f \ S⊗

n

xsj = 0 for each sj ∈ S⊗
n

xsk =
∑

(sk,s′k)∈ϱ p(sk, s
′
k) · xs′k

for each sk ∈ S⊗ \ S⊗
f

Recall that the state probability variables and the parameters ofM are unknown.
In addition, in Eσ

M , variable xs⊗0
denotes the probability of σ according to M .

We can then solve the system symbolically, obtaining a formula that relates xs⊗0
to (only) the weight parameters from M . We denote this formula with p̃M (σ).

In our running example, the system of equations for the cross-product system
of Figure 5a is given in Figure 5b. By symbolically solving the equation system,
we derive (ρre + ρτ1

· ρ′
re · ρ′

τ2
) · ρta · ρid · ρtr · ρτ5/((1 − ρτ1

· ρτ2
) · (1 − ρ′

τ1
· ρ′

τ2
) · (1 − ρ′′

τ1
· ρ′′

τ2
)),

where each ρ is a division of weight parameters; e.g. ρre = wt4/(wt4
+ wτ4

+ wt2
+ wτ1

).

Estimating weights through optimisation. We now combine into a single
system all the symbolic probability descriptions derived, as shown before, for
every trace in the input log L. For every trace σ in L, we compute the trace
probability of σ according to the relative frequency of σ in L (denoted L(σ))
and compare it with the corresponding symbolic formula p̃M (σ). We do so by
imposing, overall, optimisation against a stochastic conformance measure applied
to M and L, such as uEMSC or ER-1, which is a substitution of the trace
probability of M(σ) by our symbolic formula p̃M (σ). For uEMSC, we get:

maximise 1−
∑
σ∈L̄

max (L(σ)− p̃M (σ), 0) (5)

This problem is non-convex due to the many divisions. However, the max can be
rewritten into linear constraints, and all parameters are numeric, which makes
it suitable for standard solvers. A solution to this problem satisfies Definition 8,
when taking the representational bias of SLPNs and uEMSC. Another optimal
solution for Definition 8 can be obtained by maximising ER-1 in a similar way.

7 Evaluation

The two-stage SLPN discovery approaches were implemented in the ProM frame-
work; their source code and the experiments’ scripts are publicly available6. A

6 https://github.com/promworkbench/SLPNMiner

https://github.com/promworkbench/SLPNMiner
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Fig. 6: Experimental setup for evaluation.

Table 1: Results for DFMM [13] control-flow models.
Stochastic discovery technique

Log Measure d-uEMSC d-ER Frequency Alignment LH RH Scaled

BPIC2013 close uEMSC 0.5745 0.5358 0.0000 0.4273 0.0000 0.0000 0.0000
EMSC 0.9059 0.8820 0.4576 0.4701 0.4600 0.4712 0.4716
ER-1 0.0881 0.0906 0.0397 0.0751 0.0650 0.0650 0.0650

BPIC2013 open uEMSC 0.3659 0.3910 0.0000 0.4164 0.0000 0.0000 0.0000
EMSC 0.4897 0.4541 0.4482 0.4207 0.4209 0.4156 0.4212
ER-1 0.1082 0.1059 0.0449 0.1141 0.1000 0.1000 0.1000

BPIC2017 application uEMSC 0.5832 0.5072 0.2785 0.4117 0.3214 0.3214 0.3214
EMSC 0.6804 0.8673 0.8605 0.8672 0.8672 0.8672 0.8672
ER-1 0.1134 0.1106 0.1110 0.1137 0.1110 0.1110 0.1110

BPIC2017 offer uEMSC 0.6563 0.5828 0.5388 0.5811 0.5373 0.5373 0.5373
EMSC 0.9155 0.9101 0.9026 0.9102 0.9010 0.9010 0.9010
ER-1 0.2312 0.2330 0.1091 0.3115 0.1092 0.1092 0.1092

BPIC2020 domestic uEMSC 0.8079 0.8064 0.0000 0.3575 0.0000 0.0000 0.0000
EMSC 0.9158 0.8596 timeout timeout timeout timeout timeout
ER-1 0.1543 0.1569 0.0428 0.1144 0.0384 0.0384 0.0384

BPIC2020 request uEMSC 0.7537 0.7151 0.0000 0.6256 0.0000 0.0000 0.0000
EMSC 0.2830 0.1978 0.4116 0.4026 0.3991 0.3990 0.4006
ER-1 0.1610 0.1538 0.0386 0.1220 0.0389 0.0389 0.0389

road traffic fines uEMSC 0.8196 0.3048 0.0139 0.2940 0.0000 0.0000 0.0000
EMSC 0.9061 0.7054 0.5159 0.5311 0.5311 0.5566 0.5403
ER-1 0.1938 0.1955 0.0627 0.1675 0.0590 0.0590 0.0590

60-second timeout is applied to each trace probability calculation. In this sec-
tion, we compare the quality of models of our techniques with existing stochastic
discovery techniques on 7 publicly available real-life event logs7.

Set-up. Figure 6 shows the experiment setup. Firstly, two control flow discovery
algorithms (IMf [9] and DFMM [13]; chosen as they guarantee livelock-freedom)
are applied to each full log to obtain a control-flow model. Next, each log is
randomly split using 5-fold cross-validation to measure how well the techniques
can represent a non-changing process; stochastic discovery (our “d-uEMSC” and
“d-ER” discovery techniques, as well as 5 estimators from [6]) are applied to 4
folds and the remaining fold is used to evaluate the SLPN using uEMSC [14],
EMSC [14] and ER-1 [18]. A 100-second timeout was applied to each conformance
measure. The evaluation was repeated 3 times to eliminate random effects: each
reported number is thus the average over 15 models.

Results. The results are shown in Tables 1 and 2. We could not compute EMSC
on several estimators for the BPIC2020-domestic declations log. Even though d-
uEMSC and d-ER optimise for uEMSC and ER-1 respectively, training data was
not used for measuring, thus in this experiment they are not guaranteed to yield
the highest scores. Nevertheless, d-uEMSC got the highest uEMSC value in 9
cases and d-ER got the highest ER-1 in 4 cases. On the EMSC measure, for which
the techniques did not optimise, d-uEMSC was highest in 9 cases and d-ER in 3
cases. The closest existing technique was the alignment-based estimator, which
got a highest EMSC score once, which highlights the trade-offs that need to be
made in stochastic discovery, even when optimising for a single measure.

7 https://www.tf-pm.org/resources/logs

https://www.tf-pm.org/resources/logs


Table 2: Results for IMf [9] control-flow models.
Stochastic discovery technique

Log Measure d-uEMSC d-ER Frequency Alignment LH RH Scaled

BPIC2013 close uEMSC 0.4989 0.3860 0.0000 0.4273 0.0000 0.0000 0.0000
EMSC 0.7199 0.7140 0.4568 0.6569 0.4681 0.4615 0.4609
ER-1 0.0856 0.0835 0.0397 0.0751 0.0650 0.0650 0.0650

BPIC2013 open uEMSC 0.4391 0.4518 0.0000 0.4165 0.0000 0.0000 0.0000
EMSC 0.7041 0.7005 0.4208 0.4483 0.4482 0.4465 0.4385
ER-1 0.1396 0.1475 0.0449 0.1141 0.0999 0.0999 0.0999

BPIC2017 application uEMSC 0.3256 0.3753 0.2785 0.4117 0.3214 0.3214 0.3214
EMSC 0.8068 0.8917 0.8650 0.8663 0.8649 0.8650 0.8590
ER-1 0.1431 0.1574 0.0609 0.1686 0.0457 0.0457 0.0457

BPIC2017 offer uEMSC 0.6564 0.5829 0.5388 0.5811 0.5373 0.5373 0.5373
EMSC 0.9155 0.9101 0.9026 0.9102 0.9010 0.9010 0.9010
ER-1 0.1080 0.1042 0.1091 0.1037 0.1092 0.1092 0.1092

BPIC2020 domestic uEMSC 0.0231 0.0152 0.0001 0.5799 0.0000 0.0000 0.0000
EMSC 0.6187 0.5940 0.4342 0.9361 timeout timeout timeout
ER-1 0.0763 0.0791 0.1472 0.1277 0.0384 0.0384 0.0384

BPIC2020 request uEMSC 0.2830 0.1978 0.0000 0.6256 0.0000 0.0000 0.0000
EMSC 0.7537 0.7151 0.4020 0.3987 0.4093 0.4092 0.3991
ER-1 0.0701 0.0637 0.0386 0.1220 0.0386 0.0386 0.0386

road traffic fines uEMSC 0.1729 0.1407 0.0140 0.0700 0.0000 0.0000 0.0000
EMSC 0.6148 0.7473 0.5567 0.5291 0.5292 0.5310 0.5389
ER-1 0.1188 0.1389 0.0627 0.1493 0.0590 0.0590 0.0590

When comparing the control-flow discovery techniques, DFMM combines well
with our d-uEMSC and d-ER, as a highest measure (of all stochastic discovery
techniques) is achieved in 16 out of 21 log-measure combinations, while for IMf
this is 13. We manually inspected the results for the BPIC2020 domestic log
on IMf, where the alignment-based estimator fared better than d-uEMSC and
d-ER. We found that the many silent transitions in the model led to a large state
space for the cross-product system, which made the derivation of a symbolic rep-
resentation of trace probability time out. Consequently, these trace probabilities
were not considered during optimisation. We also re-ran some instances multiple
times, and found that our solver may return different values over different runs
and, as expected, does not guarantee optimality on our non-convex problem.

In summary, the estimators proposed in this paper can be applied to real-
life logs and discover better SLPNs, considering common stochastic conformance
measures, even the ones they did not optimise for. Thus, they provide alternative
estimation approaches to existing two-stage stochastic discovery techniques.

8 Conclusion

In this paper, we formally defined stochastic process discovery as finding a model
with an optimal conformance checking measure over a given representation bias.
We studied the implications of this definition in detail, and introduced tech-
niques for two biases: one for SPNs (a one-stage approach), and one that takes
a control-flow model for SLPNs (a two-stage approach). We implemented and
evaluated the latter one for uEMSC and ER-1, and found that they perform
well compared to existing techniques, even evaluating stochastic measures on
test logs they did not optimise for. A direction for future work is to improve the
implementation of symbolic trace probabilities, and to implement the one-stage
approach. Furthermore, stochastic discovery can be extended to optimisation
problems over further conformance measures, and on combinations of such mea-
sures. In particular, considering simplicity measures, which must be invented
first for stochastic models, may prove beneficial for stochastic process discovery.
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